31 Epizód

  1. Hugo Aerts and Ray Mak on FaceAge

    Közzétéve: 2025. 05. 08.
  2. Mohamed Omar on pathology and generative AI

    Közzétéve: 2024. 08. 27.
  3. Judith Bonnes on detecting cardiac arrest using wearable technology

    Közzétéve: 2024. 03. 07.
  4. Andrew Soltan on federated learning systems

    Közzétéve: 2024. 01. 24.
  5. Mamatha Bhat on deep learning for predicting liver graft fibrosis

    Közzétéve: 2023. 05. 23.
  6. Xiao Liu on AI-based clinical research studies

    Közzétéve: 2023. 03. 21.
  7. Ashleigh Myall on predicting hospital-onset COVID-19 infections

    Közzétéve: 2022. 07. 19.
  8. Reading race

    Közzétéve: 2022. 05. 11.
  9. Caroline Figueroa on the need for feminist intersectionality in digital health

    Közzétéve: 2021. 07. 26.
  10. Mihaela van der Schaar and Vincent J Gnanapragasam on predicting mortality in prostate cancer

    Közzétéve: 2021. 02. 15.
  11. Deepti Gurdasani on health data, AI, and COVID-19

    Közzétéve: 2020. 12. 02.
  12. Vence Bonham on diversity and impact in genomic research

    Közzétéve: 2020. 12. 02.
  13. Maimuna S Majumder on COVID-19 misinformation online

    Közzétéve: 2020. 10. 26.
  14. Sara Gerke and Timo Minssen on AI in healthcare

    Közzétéve: 2020. 06. 23.
  15. Identifying and measuring brain lesions in patients with traumatic brain injury

    Közzétéve: 2020. 05. 14.
  16. The Lancet Digital Health turns one

    Közzétéve: 2020. 04. 29.
  17. A real-time dashboard of clinical trials for COVID-19

    Közzétéve: 2020. 04. 24.
  18. Opportunistic value of fully automated CT-based biomarkers

    Közzétéve: 2020. 03. 04.
  19. Predicting the added benefit of adjuvant chemotherapy

    Közzétéve: 2020. 02. 19.
  20. Using Fitbit data to predict flu outbreaks

    Közzétéve: 2020. 01. 16.

1 / 2

Rupa Sarkar, Editor-in-Chief, Diana Samuel, Deputy Editor, Lucy Dunbar, Senior Editor, and Gustavo Monnerat, Senior Editor at The Lancet Digital Health, in conversation with the journal’s authors, explore their latest research and its impact on people’s health, healthcare, and health policy. A monthly audio companion to this open access journal, this podcast covers a broad range of topics, from using machine learning to predict mortality in prostate cancer and the need for feminist intersectionality in digital health, to how algorithms can predict a patient's race from medical data, and more.

Visit the podcast's native language site