Generally Intelligent
Podcast készítő Kanjun Qiu
37 Epizód
-
Episode 37: Rylan Schaeffer, Stanford: On investigating emergent abilities and challenging dominant research ideas
Közzétéve: 2024. 09. 18. -
Episode 36: Ari Morcos, DatologyAI: On leveraging data to democratize model training
Közzétéve: 2024. 07. 11. -
Episode 35: Percy Liang, Stanford: On the paradigm shift and societal effects of foundation models
Közzétéve: 2024. 05. 09. -
Episode 34: Seth Lazar, Australian National University: On legitimate power, moral nuance, and the political philosophy of AI
Közzétéve: 2024. 03. 12. -
Episode 33: Tri Dao, Stanford: On FlashAttention and sparsity, quantization, and efficient inference
Közzétéve: 2023. 08. 09. -
Episode 32: Jamie Simon, UC Berkeley: On theoretical principles for how neural networks learn and generalize
Közzétéve: 2023. 06. 22. -
Episode 31: Bill Thompson, UC Berkeley, on how cultural evolution shapes knowledge acquisition
Közzétéve: 2023. 03. 29. -
Episode 30: Ben Eysenbach, CMU, on designing simpler and more principled RL algorithms
Közzétéve: 2023. 03. 23. -
Episode 29: Jim Fan, NVIDIA, on foundation models for embodied agents, scaling data, and why prompt engineering will become irrelevant
Közzétéve: 2023. 03. 09. -
Episode 28: Sergey Levine, UC Berkeley, on the bottlenecks to generalization in reinforcement learning, why simulation is doomed to succeed, and how to pick good research problems
Közzétéve: 2023. 03. 01. -
Episode 27: Noam Brown, FAIR, on achieving human-level performance in poker and Diplomacy, and the power of spending compute at inference time
Közzétéve: 2023. 02. 09. -
Episode 26: Sugandha Sharma, MIT, on biologically inspired neural architectures, how memories can be implemented, and control theory
Közzétéve: 2023. 01. 17. -
Episode 25: Nicklas Hansen, UCSD, on long-horizon planning and why algorithms don't drive research progress
Közzétéve: 2022. 12. 16. -
Episode 24: Jack Parker-Holder, DeepMind, on open-endedness, evolving agents and environments, online adaptation, and offline learning
Közzétéve: 2022. 12. 06. -
Episode 23: Celeste Kidd, UC Berkeley, on attention and curiosity, how we form beliefs, and where certainty comes from
Közzétéve: 2022. 11. 22. -
Episode 22: Archit Sharma, Stanford, on unsupervised and autonomous reinforcement learning
Közzétéve: 2022. 11. 17. -
Episode 21: Chelsea Finn, Stanford, on the biggest bottlenecks in robotics and reinforcement learning
Közzétéve: 2022. 11. 03. -
Episode 20: Hattie Zhou, Mila, on supermasks, iterative learning, and fortuitous forgetting
Közzétéve: 2022. 10. 14. -
Episode 19: Minqi Jiang, UCL, on environment and curriculum design for general RL agents
Közzétéve: 2022. 07. 19. -
Episode 18: Oleh Rybkin, UPenn, on exploration and planning with world models
Közzétéve: 2022. 07. 11.
Technical discussions with deep learning researchers who study how to build intelligence. Made for researchers, by researchers.
