Generally Intelligent
Podcast készítő Kanjun Qiu
37 Epizód
-
Episode 17: Andrew Lampinen, DeepMind, on symbolic behavior, mental time travel, and insights from psychology
Közzétéve: 2022. 02. 28. -
Episode 16: Yilun Du, MIT, on energy-based models, implicit functions, and modularity
Közzétéve: 2021. 12. 21. -
Episode 15: Martín Arjovsky, INRIA, on benchmarks for robustness and geometric information theory
Közzétéve: 2021. 10. 15. -
Episode 14: Yash Sharma, MPI-IS, on generalizability, causality, and disentanglement
Közzétéve: 2021. 09. 24. -
Episode 13: Jonathan Frankle, MIT, on the lottery ticket hypothesis and the science of deep learning
Közzétéve: 2021. 09. 10. -
Episode 12: Jacob Steinhardt, UC Berkeley, on machine learning safety, alignment and measurement
Közzétéve: 2021. 06. 18. -
Episode 11: Vincent Sitzmann, MIT, on neural scene representations for computer vision and more general AI
Közzétéve: 2021. 05. 20. -
Episode 10: Dylan Hadfield-Menell, UC Berkeley/MIT, on the value alignment problem in AI
Közzétéve: 2021. 05. 12. -
Episode 09: Drew Linsley, Brown, on inductive biases for vision and generalization
Közzétéve: 2021. 04. 02. -
Episode 08: Giancarlo Kerg, Mila, on approaching deep learning from mathematical foundations
Közzétéve: 2021. 03. 27. -
Episode 07: Yujia Huang, Caltech, on neuro-inspired generative models
Közzétéve: 2021. 03. 18. -
Episode 06: Julian Chibane, MPI-INF, on 3D reconstruction using implicit functions
Közzétéve: 2021. 03. 05. -
Episode 05: Katja Schwarz, MPI-IS, on GANs, implicit functions, and 3D scene understanding
Közzétéve: 2021. 02. 24. -
Episode 04: Joel Lehman, OpenAI, on evolution, open-endedness, and reinforcement learning
Közzétéve: 2021. 02. 17. -
Episode 03: Cinjon Resnick, NYU, on activity and scene understanding
Közzétéve: 2021. 02. 01. -
Episode 02: Sarah Jane Hong, Latent Space, on neural rendering & research process
Közzétéve: 2021. 01. 07. -
Episode 01: Kelvin Guu, Google AI, on language models & overlooked research problems
Közzétéve: 2020. 12. 15.
Technical discussions with deep learning researchers who study how to build intelligence. Made for researchers, by researchers.
