Best AI papers explained
Podcast készítő Enoch H. Kang
550 Epizód
-
Inverse Reinforcement Learning Meets Large Language Model Post-Training: Basics, Advances, and Opportunities
Közzétéve: 2025. 07. 22. -
The Invisible Leash: Why RLVR May Not Escape Its Origin
Közzétéve: 2025. 07. 20. -
Language Model Personalization via Reward Factorization
Közzétéve: 2025. 07. 20. -
Train for the Worst, Plan for the Best: Understanding Token Ordering in Masked Diffusions
Közzétéve: 2025. 07. 18. -
Do We Need to Verify Step by Step? Rethinking Process Supervision from a Theoretical Perspective
Közzétéve: 2025. 07. 17. -
Soft Best-of-n Sampling for Model Alignment
Közzétéve: 2025. 07. 16. -
On Temporal Credit Assignment and Data-Efficient Reinforcement Learning
Közzétéve: 2025. 07. 15. -
Bradley–Terry and Multi-Objective Reward Modeling Are Complementary
Közzétéve: 2025. 07. 15. -
Probing Foundation Models for World Models
Közzétéve: 2025. 07. 15. -
GenAI-Powered Statistical Inference (with Unstructured Data)
Közzétéve: 2025. 07. 14. -
Interpretable Reward Modeling with Active Concept Bottlenecks
Közzétéve: 2025. 07. 14. -
PrefillOnly: An Inference Engine for Prefill-only Workloads in Large Language Model Applications
Közzétéve: 2025. 07. 14. -
A Collectivist, Economic Perspective on AI
Közzétéve: 2025. 07. 14. -
Textual Bayes: Quantifying Uncertainty in LLM-Based Systems
Közzétéve: 2025. 07. 12. -
The Winner's Curse in Data-Driven Decisions
Közzétéve: 2025. 07. 11. -
SPIRAL: Self-Play for Reasoning Through Zero-Sum Games
Közzétéve: 2025. 07. 11. -
Beyond Statistical Learning: Exact Learning Is Essential for General Intelligence
Közzétéve: 2025. 07. 11. -
Aligning Learning and Endogenous Decision-Making
Közzétéve: 2025. 07. 11. -
Reliable Statistical Inference with Synthetic Data from Large Language Models
Közzétéve: 2025. 07. 11. -
Multi-Turn Reinforcement Learning from Human Preference Feedback
Közzétéve: 2025. 07. 10.
Cut through the noise. We curate and break down the most important AI papers so you don’t have to.
