Super Data Science: ML & AI Podcast with Jon Krohn
Podcast készítő Jon Krohn
877 Epizód
-
316: Make It About Yourself
Közzétéve: 2019. 11. 22. -
315: Making Data Accessible
Közzétéve: 2019. 11. 21. -
314: Meet the Team
Közzétéve: 2019. 11. 15. -
313: The Power of Online Data Education
Közzétéve: 2019. 11. 14. -
312: Contemplation
Közzétéve: 2019. 11. 08. -
311: Using Data Right In Smart Cities
Közzétéve: 2019. 11. 07. -
310: Trial by Fire
Közzétéve: 2019. 11. 01. -
309: Learning Through Competition
Közzétéve: 2019. 10. 30. -
308: Your Tribe
Közzétéve: 2019. 10. 25. -
307: Problem Solving Through Better Thinking
Közzétéve: 2019. 10. 23. -
306: Pura Vida
Közzétéve: 2019. 10. 18. -
305: Using Data Visualization Tools
Közzétéve: 2019. 10. 16. -
304: The Law of Attraction
Közzétéve: 2019. 10. 11. -
303: Proper Hypothesis Testing For Every Field
Közzétéve: 2019. 10. 09. -
302: What is Data Science to you?
Közzétéve: 2019. 10. 04. -
301: Finding Your Edge
Közzétéve: 2019. 10. 02. -
300: Legacy
Közzétéve: 2019. 09. 27. -
299: Becoming Seasoned At Failure
Közzétéve: 2019. 09. 25. -
298: The Six Months Rule
Közzétéve: 2019. 09. 20. -
297: Fortitude & Passion in the Data Science Journey
Közzétéve: 2019. 09. 18.
The latest machine learning, A.I., and data career topics from across both academia and industry are brought to you by host Dr. Jon Krohn on the Super Data Science Podcast. As the quantity of data on our planet doubles every couple of years and with this trend set to continue for decades to come, there's an unprecedented opportunity for you to make a meaningful impact in your lifetime. In conversation with the biggest names in the data science industry, Jon cuts through hype to fuel that professional impact. Whether you're curious about getting started in a data career or you're a deep technical expert, whether you'd like to understand what A.I. is or you'd like to integrate more data-driven processes into your business, we have inspiring guests and lighthearted conversation for you to enjoy. We cover tools, techniques, and implementation tricks across data collection, databases, analytics, predictive modeling, visualization, software engineering, real-world applications, commercialization, and entrepreneurship − everything you need to crush it with data science.
