60 Epizód

  1. Machine learning for operational analytics and business intelligence

    Közzétéve: 2019. 10. 10.
  2. Machine learning and analytics for time series data

    Közzétéve: 2019. 09. 26.
  3. Understanding deep neural networks

    Közzétéve: 2019. 09. 12.
  4. Becoming a machine learning practitioner

    Közzétéve: 2019. 08. 29.
  5. Labeling, transforming, and structuring training data sets for machine learning

    Közzétéve: 2019. 08. 15.
  6. Make data science more useful

    Közzétéve: 2019. 08. 01.
  7. Acquiring and sharing high-quality data

    Közzétéve: 2019. 07. 18.
  8. Tools for machine learning development

    Közzétéve: 2019. 07. 03.
  9. Enabling end-to-end machine learning pipelines in real-world applications

    Közzétéve: 2019. 06. 20.
  10. Bringing scalable real-time analytics to the enterprise

    Közzétéve: 2019. 06. 09.
  11. Applications of data science and machine learning in financial services

    Közzétéve: 2019. 05. 23.
  12. Real-time entity resolution made accessible

    Közzétéve: 2019. 05. 09.
  13. Why companies are in need of data lineage solutions

    Közzétéve: 2019. 04. 25.
  14. What data scientists and data engineers can do with current generation serverless technologies

    Közzétéve: 2019. 04. 11.
  15. It’s time for data scientists to collaborate with researchers in other disciplines

    Közzétéve: 2019. 03. 28.
  16. Algorithms are shaping our lives—here’s how we wrest back control

    Közzétéve: 2019. 03. 14.
  17. Why your attention is like a piece of contested territory

    Közzétéve: 2019. 02. 28.
  18. The technical, societal, and cultural challenges that come with the rise of fake media

    Közzétéve: 2019. 02. 14.
  19. Using machine learning and analytics to attract and retain employees

    Közzétéve: 2019. 01. 31.
  20. How machine learning impacts information security

    Közzétéve: 2019. 01. 17.

1 / 3

The O'Reilly Data Show Podcast explores the opportunities and techniques driving big data, data science, and AI.

Visit the podcast's native language site